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Abstract. In this supplementary material to Jentsch and Politis (2014) (subsequently denoted
by (JP)), we provide additional supporting simulations, an application of the MLPB to German
stock index data and proofs omitted in the paper.

1. Additional simulation studies

Analogue to the simulation study conducted in Section 6.2 of the paper, we apply MLPB,
ARsieve, MBB and TBB to time series data of length n = 100, 200, 500 from an i.i.d. white noise
process Xt = et (WN model), where et ∼ N (0,Σ) is i.i.d. normally distributed. Note that here
all proposed techniques remain valid for all choices of (sufficiently small) tuning parameters.

In Figure 1 and 2, the data is i.i.d. and in fact a bootstrap for dependent data is redundant
to capture any dependence structure. However, we compare MLPB, ARsieve, MBB and TBB for
l, p, s = 1, 2, . . . , 20, i.e. the data generating process is over-fitted and hence slightly misspecified

by MLPB and ARsieve. Observe that Γ̂ǫ
κ,l computed for the MLPB becomes block-diagonal for

l < 0.5 and the scheme degenerates to become an i.i.d. bootstrap as is true for the ARsieve if
p = 0 [compare Remark 3.1], which would be of course most appropriate in this case, but are not
reported here. This is in contrast to MBB and TBB, which simplify to become Efron’s bootstrap
for s = 1. However, the MLPB with data-adaptively selected banding parameters performs very
well, where the individual choice seems to be slightly superior. The ARsieve appears to have
problems in choosing the proper lag order p = 0 which leads to a larger RMSE, but does affect
only slightly the performance wrt CR. In both Figures 1 and 2, it can be seen that wrt to RMSE
and CR, all bootstrap procedures lose in terms of efficiency with redundantly increasing tuning
parameters.

Figures 3 and 4 relate to Figures 1 and 2 in (JP) and show the corresponding results for
the second coordinate of X and µ, respectively.

2. A real data example

In this section, we apply the MLPB method to real data. We consider log-returns of stock
prices of all 30 major German companies that are contained in the German Stock Index DAX
(Deutscher Aktienindex) from July 1st, 2008 – January 11th, 2010. The exact constitution of the
DAX is displayed in alphabetical order in Table 1 and the log-returns of the selected companies
Allianz, Bayer, Deutsche Bank, EON, Metro, Siemens, Telekom and Volkswagen are shown in
Figure 5.

Let P t = (P1,t, . . . , P30,t)
T denote the vector of stock prices of the DAX companies at time

t ordered as in Table 1 and define Xt = (X1,t, . . . , X30,t)
T as the vector of their log-returns,
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Figure 1. RMSE for estimating V ar(
√
n(X1 − µ1)) and CR of bootstrap con-

fidence intervals for µ1 by MLPB (solid), ARsieve (dashed), MBB (dotted)
and TBB (dash-dotted) are reported vs. the respective tuning parameters
l, p, s ∈ {1, . . . , 20} for the WN model with sample size n ∈ {100, 200, 500}. Line
segments indicate results for data-adaptively chosen tuning parameters. MLPB
with individual (grey) and global (black) banding parameter choice are reported.

i.e. Xj,t = log(Pj,t) − log(Pj,t−1). We consider log-return data for d = 10, 20, 30 stocks and
n = 100, 200, 300, 400 trading days starting on July 1st, 2008. The MLPB procedure as de-
scribed in Section 3 is applied to estimate the distribution of the average log-returns of equally
weighted portfolios of these stocks over different time horizons. Based on an MLPB bootstrap
sample, we compute its vector-valued sample mean and its weighted sum, where the weights are
chosen to be equal and summing to one, i.e. in the notation of Section 5, we use the weight
vector b = 1

d1d. The case of equal weights is meant to mimic the realistic scenario of an investor
having a fixed amount of money to be invested equally on the d stocks chosen; increasing d
would then mean increasing the diversification of the investor’s portfolio without increasing the
total amount of money invested.

The via MLPB estimated standard deviations and sample means of the average log-returns
of the portfolios are displayed in Table 2 and the corresponding densities obtained by the R

function density() are shown in Figure 6, where the bandwidth is chosen by Silverman’s rule-of-
thumb and a Gaussian kernel has been used (the default setting of density() in R). To get these
results, the banding parameter l has been selected by the (global) rule suggested in Section 2.3
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Figure 2. RMSE for estimating V ar(
√
n(X2 − µ2)) and CR of bootstrap con-

fidence intervals for µ2 by MLPB (solid), ARsieve (dashed), MBB (dotted)
and TBB (dash-dotted) are reported vs. the respective tuning parameters
l, p, s ∈ {1, . . . , 20} for the WN model with sample size n ∈ {100, 200, 500}. Line
segments indicate results for data-adaptively chosen tuning parameters. MLPB
with individual (grey) and global (black) banding parameter choice are reported.

as displayed in Table 3, B = 1000 bootstrap replications have been generated and the tuning
parameters ǫ and β are set equal to one.

Going from top to bottom in Figure 6, the effect of diversification can be seen as the number of
stocks in the portfolio is increasing; the apparent result is that the estimated distributions be-
come less skewed and more normal-looking. Furthermore, increased diversification is associated
with a decrease of the corresponding standard deviations as displayed in Table 2. Going from
left to right in Figure 6, i.e., increasing sample size, the distributions become also more peaked
due to the expected decrease in variance—see also Table 2. Although the rule for banding pa-
rameter selection seems to choose too large values for l as shown in Table 3, the MLPB leads
clearly to reasonable results. Table 3 also indicates that it may happen in practice that the
selected banding parameter do not increase monotonically with sample size; this is, of course, a
finite sample phenomenon.

To conclude the discussion of the real data example, two remarks are in order. First note
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Figure 3. RMSE for estimating V ar(
√
n(X2 − µ2)) and CR of bootstrap con-

fidence intervals for µ2 by MLPB (solid), ARsieve (dashed), MBB (dotted)
and TBB (dash-dotted) are reported vs. the respective tuning parameters
l, p, s ∈ {1, . . . , 20} for the VMA(1) model with sample size n ∈ {100, 200, 500}.
Line segments indicate results for data-adaptively chosen tuning parameters.
MLPB with individual (grey) and global (black) banding parameter choice are
reported.

that financial returns are invariably assumed to be nonlinear time series, and are typically mod-
elled as ARCH or GARCH processes. However, the MLPB is proven to work also for the sample
mean of time series that are not necessarily linear—see e.g. Theorem 4.1, and thus is applicable
here. In this real data example, we have used up to d = 30 stocks and sample size n = 400.
This leads to a (12, 000 × 12, 000) covariance matrix whose eigenvalues and eigenvectors have
to be computed and which has to be Cholesky decomposed and inverted to apply the MLPB
scheme. The simulations have been executed on the bwGrid Cluster provided for scientific com-
puting by the University of Mannheim with R version 2.13.2, where it is possible to do this for
dn = 12, 000. Without having access to such computational power, we propose to use the less
demanding modified bootstrap scheme described in Section 5.4 of the paper, which results in
qualitatively similar results, if S is chosen sufficiently small.
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Figure 4. RMSE for estimating V ar(
√
n(X2 − µ2)) and CR of bootstrap con-

fidence intervals for µ2 by MLPB (solid), ARsieve (dashed), MBB (dotted)
and TBB (dash-dotted) are reported vs. the respective tuning parameters
l, p, s ∈ {1, . . . , 20} for the VAR(1) model with sample size n ∈ {100, 200, 500}.
Line segments indicate results for data-adaptively chosen tuning parameters.
MLPB with individual (grey) and global (black) banding parameter choice are
reported.

Adidas Deutsche Lufthansa Linde
Allianz Deutsche Post MAN
BASF Deutsche Telekom Merck KGAA
Bayer E.ON Metro

Beiersdorf Fresenius Münchner Rück
BMW Fresenius Medical Care RWE

Commerzbank Heidelberg Cement SAP
Daimler Henkel Siemens

Deutsche Bank Infineon Thyssen Krupp
Deutsche Börse K+S Volkswagen

Table 1. DAX companies (on June 1st, 2012).
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Figure 5. Log-returns of stock prices of selected German companies contained
in the German stock index DAX for 400 trading days starting on July 1st, 2008.

n = 100 n = 200 n = 300 n = 400
d mean sd mean sd mean sd mean sd
10 -0.1309 1.1227 -0.4461 0.8266 -0.1449 0.7167 0.6661 0.5414
20 -0.8819 0.7957 0.2131 0.6524 -0.0601 0.5120 0.1505 0.5206
30 -0.7321 0.8084 0.7269 0.6058 -0.0511 0.5790 0.0536 0.4911

Table 2. Comparison of bootstrap standard deviations and sample means ×103,
respectively, of average log-returns of equally weighted portfolios for different
number of stocks d = 10, 20, 30 and n = 100, 200, 300, 400 trading days starting
on July 1st, 2008.

❍
❍
❍
❍

❍❍
d

n
100 200 300 400

10 18 14 16 16
20 18 19 36 36
30 28 37 36 37

Table 3. Banding parameters selected by the rule-of-thumb suggested in Section
2.3 for log-return data for different number of stocks d = 10, 20, 30 and n =
100, 200, 300, 400 trading days starting on July 1st, 2008.
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Figure 6. Bootstrap density plots of the average log-returns of an equally
weighted portfolio that contains d = 10, 20, 30 stocks (from top to bottom) for
n = 100, 200, 300, 400 (from left to right) trading days starting on July 1st, 2008.

Appendix A. Proofs

Proof of Theorem 2.1. Symmetry of Γ̂κ,l − Γdn together with problem 21, p. 313 in Horn

and Johnson (1990) and plugging-in for Γ̂κ,l(i, j) and Γdn(i, j) yields

ρ(Γ̂κ,l − Γdn) ≤ max
1≤j≤dn

dn∑

i=1

|κl(m2(i, j))Ĉm
1
(i,j)(m2(i, j))− Cm

1
(i,j)(m2(i, j))|

≤ 2
d∑

i,j=1

n−1∑

h=0

|κl(h)Ĉij(h)− Cij(h)|,
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where the second inequality is implied by the definitions of m1(·, ·) and m2(·, ·) in (2.4). By
splitting-up the expression on the last right-hand side above and plugging-in for κl(h), we get

ρ(Γ̂κ,l − Γdn) ≤ 2
d∑

i,j=1




l∑

h=0

|Ĉij(h)− Cij(h)|+
⌊cκl⌋∑

h=l+1

|κl(h)Ĉij(h)− Cij(h)|+
n−1∑

h=⌊cκl⌋+1

|Cij(h)|




=: A1 +A2 +A3.

Now, before considering A1 and A2 separately, note that

‖Ĉij(h)− Cij(h)‖2 ≤ 1

n
‖

min(n,n−h)∑

t=max(1,1−h)

(Xi,t+h −X i)(Xj,t −Xj)− (n− |h|)Cij(h)‖2 +
|h|
n
‖Cij(h)‖2

≤ M√
n
+

|h|
n
|Cij(h)|, (A.1)

where the second inequality follows from assumption (A2). Using this result, we obtain

‖A1‖2 ≤ 2
d∑

i,j=1

l∑

h=0

(
M√
n
+

|h|
n
|Cij(h)|

)
≤ 2Md2(l + 1)√

n
+ 2

l∑

h=0

|h|
n
|C(h)|1.

Now, consider A2. First, it holds

A2 ≤ 2
d∑

i,j=1

⌊cκl⌋∑

h=l+1

|κl(h)||Ĉij(h)− Cij(h)|+ 2

⌊cκl⌋∑

h=l+1

|κl(h)− 1||C(h)|1

≤ 2
d∑

i,j=1

⌊cκl⌋∑

h=l+1

|Ĉij(h)− Cij(h)|+ 2

⌊cκl⌋∑

h=l+1

|C(h)|1

and straightforward application of (A.1) results in

‖A2‖2 ≤ 2
d∑

i,j=1

⌊cκl⌋∑

h=l+1

(
M√
n
+

|h|
n
|Cij(h)|

)
+ 2

⌊cκl⌋∑

h=l+1

|C(h)|1

≤ 2Md2(⌊cκl⌋ − l)√
N

+ 2

⌊cκl⌋∑

h=l+1

|h|
n
|C(h)|1 + 2

⌊cκl⌋∑

h=l+1

|C(h)|1.

�

Proof of Theorem 2.2.

Without loss of generality, the eigenvalues of R̂κ,l can be ordered such that r1 ≥ r2 ≥ · · · ≥ rdn
and let λmax(A) and λmin(A) denote the largest and the smallest eigenvalue of a matrix A,
respectively. Then, by Corollary 4.3.3 in Horn and Johnson (1990), it holds

−rdn = −λmin(R̂κ,l) = λmax(−R̂κ,l) ≤ λmax(Rdn − R̂κ,l) ≤ ρ(Rdn − R̂κ,l), (A.2)

where Rdn = V̂−1/2ΓdnV̂
−1/2 and the last inequality follows from the definition of the operator

norm and the spectral factorization of a symmetric matrix. Further, it holds

Γ̂ǫ
κ,l − Γ̂κ,l = V̂1/2S(Dǫ −D)ST V̂1/2,

where

Dǫ −D = diag
(
max(ri, ǫn

−β)− ri, i = 1, . . . , dn
)
= diag

(
max(0, ǫn−β − ri), i = 1, . . . , dn

)
.
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Together with (A.2) and

ρ(Γdn − Γ̂κ,l) ≤ ρ2(V1/2)ρ(S(Dǫ −D)ST ) = max
i

Ĉii(0) ·max(0, ǫn−β − rdn)

this leads to

ρ(Γ̂ǫ
κ,l − Γdn) ≤ max(0, ǫ maxi Ĉii(0)n

−β − rdn) + ρ(Γ̂κ,l − Γdn)

≤ max
i

Ĉii(0)

(
ǫn−β +

1

maxi Ĉii(0)
ρ(Γdn − Γ̂κ,l)

)
+ ρ(Γdn − Γ̂κ,l)

= ǫ max
i

Ĉii(0)n
−β + 2ρ(Γ̂κ,l − Γdn).

From ‖Ĉii(0)‖2 = Cii(0) +O( 1√
n
), i = 1, . . . , d and Theorem 2.1, we get the desired result. �

Proof of Corollary 2.1.

By (A1), Gerschgorins Theorem and by (A3), we have that ρ(Γdn), ρ(Γ
−1
dn ), ρ(Γ

1/2
dn ) and ρ(Γ

−1/2
dn )

are bounded from above and from below. The claimed result for ρ(Γ̂ǫ
κ,l − Γdn) follows directly

from Theorem 2.2and the corresponding result for the inverses of Γ̂ǫ
κ,l and Γdn follows from the

proof of Theorem 2 in McMurry and Politis (2010). The claimed convergence of the Cholesky
matrices is established through Theorem 2.1 of Drmac, Omladic and Veselic (1994), which
provides the bound

ρ
(
(Γ̂ǫ

κ,l)
1/2 − Γ

1/2
dn

)
≤

2cnρ(Γ
1/2
dn )ρ(Γ

−1/2
dn (Γ̂ǫ

κ,l − Γdn)(Γ
−1/2
dn )T )

√
1− 4c2nρ(Γ

−1/2
dn (Γ̂ǫ

κ,l − Γdn)(Γ
−1/2
dn )T )

, (A.3)

where cn = 1
2 + ⌊log2(dn)⌋ if the radicand in the denominator above is strictly positive. Since

ρ(Γ
1/2
dn ) and ρ(Γ

−1/2
dn ) are bounded from above, the desired results hold if log2(n) · rl,n = o(1).

The corresponding result for their inverses follows from

Γ
−1/2
dn − (Γ̂ǫ

κ,l)
−1/2 = (Γ̂ǫ

κ,l)
−1/2

(
(Γ̂ǫ

κ,l)
1/2 − Γ

1/2
dn

)
Γ
−1/2
dn ,

which also implies boundedness of ρ((Γ̂ǫ
κ,l)

1/2) and ρ((Γ̂ǫ
κ,l)

−1/2) from above and from below,
which concludes this proof. �

Proof of Theorem 4.1.

Let Z̃
∗
be the bootstrap sample that is defined analogue to Z∗ in Step 4 of Section 3 in (JP)

except that the resample is drawn from the standardized values of W̃ = Γ
−1/2
dn Y instead of

W = (Γ̂ǫ
κ,l)

−1/2Y . Now, the proof of Theorem 4.1 proceeds through a sequence of lemmas.

Lemma A.1(i) gives the justification for using

Ỹ
∗
= Γ

1/2
dn Z̃

∗
(A.4)

in all subsequent computations instead of Y ∗. Furthermore, we define C(k)(h) = C(h)1(|h| ≤ k)

and let Γdn,k = (C(k)(i − j), i, j = 1, . . . , n) be the k-banded version of Γdn. The matrix Γdn,k

is banded in the sense that only the (2k + 1)d main diagonals are not equal to zero and for all
sequences k = k(n) → ∞, it holds ρ(Γdn,k − Γdn) → 0 as n → ∞ due to ρ(Γdn,k − Γdn) ≤
2
∑∞

h=k+1 |C(h)|1, which is obtained analogue to the proof of Theorem 2.1. Let Γ
1/2
dn,k be the

Cholesky decomposition of Γdn,k which exists for sufficiently large k by (A3) and note that only
its main diagonal and the d(k+1) secondary diagonals below the main diagonal contain non zero

elements which are all bounded by maxi C
1/2
ii (0). The second part of Lemma A.1 allows us also

to replace Γ
1/2
dn in (A.4) by Γ

1/2
dn,k and to get asymptotically the same results. Lemma A.2 gives
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the proper limiting bootstrap variance, while Lemma A.3 proves boundedness in probability of

E∗(Z̃∗4
i ) and Lemma A.4 deals with asymptotic normality of 1√

n

∑n
t=1 Ỹ

∗
t .

Lemma A.1. Under the assumptions of Theorem 4.1, it holds

(i)
1√
n

n∑

t=1

Y ∗
t −

1√
n

n∑

t=1

Ỹ
∗
t = oP ∗(1) and (ii)

1√
n

n∑

t=1

Ỹ
∗
t −

1√
n

n∑

t=1

Ỹ
∗,k
t = oP ∗(1),

where Ỹ
∗,k

= Γ
1/2
dn,kZ̃

∗
.

Proof. (i) Let J = [Id : · · · : Id] be the (d× dn) matrix that consists of n (d× d) unit matrices.

In the following, we show that 1√
n
bT
∑n

t=1 Y
∗
t = 1√

n
bT
∑n

t=1 Ỹ
∗
t + OP ∗(log2(n) · rl,n) for any

R
d-valued vector b. We have

1√
n
bT

n∑

t=1

Y ∗
t =

1√
n
bTJ(Γdn)

1/2Z̃
∗
+

1√
n
bTJΓ

1/2
dn (Z∗ − Z̃

∗
) +

1√
n
bTJ

(
(Γ̂ǫ

κ,l)
1/2 − Γ

1/2
dn

)
Z∗

=
1√
n
bT

n∑

t=1

Ỹ
∗
t +R∗

1 +R∗
2

and it remains to show that R∗
1 and R∗

2 are asymptotically negligible. Considering R∗
2, we get

E∗(R∗2
2 ) =

1

n
bTJ((Γ̂ǫ

κ,l)
1/2 − Γ

1/2
dn )((Γ̂ǫ

κ,l)
1/2 − Γ

1/2
dn )TJT b

≤ 1

n
bTJJT bλmax

((
(Γ̂ǫ

κ,l)
1/2 − Γ

1/2
dn

)(
(Γ̂ǫ

κ,l)
1/2 − Γ

1/2
dn

)T)

= |b|22ρ2
(
(Γ̂ǫ

κ,l)
1/2 − Γ

1/2
dn

)

and this leads to R∗
2 = OP ∗(log2(n) · rl,n) by Corollary 2.1. Now, we turn to R∗

1. First of all,

observe that Z∗ and Z̃
∗
may be represented as

Z∗ = M∗ 1

σ̂W

(
Idn − 1

dn
1dn×dn

)
(Γ̂ǫ

κ,l)
−1/2Y ,

Z̃
∗

= M∗ 1

σ̂
W̃

(
Idn − 1

dn
1dn×dn

)
(Γdn)

−1/2Y ,

where Idn is the (dn × dn) unit matrix, 1dn×dn is the (dn × dn) matrix of ones and each row
of the (dn × dn) matrix M∗ is independently and uniformly selected from the standard basis
vectors e1, . . . , edn. This yields

R∗
1 =

1

σ̂
W̃

1√
n
bTJΓ

1/2
dn M∗

(
Idn − 1

dn
1dn×dn

)(
(Γ̂ǫ

κ,l)
−1/2 − (Γdn)

−1/2
)
Y

+

(
1

σ̂W
− 1

σ̂
W̃

)
1√
n
bTJΓ

1/2
dn M∗

(
Idn − 1

dn
1dn×dn

)
(Γ̂ǫ

κ,l)
−1/2Y

= R∗
3 +R∗

4
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and for R∗
3, we get

E∗(R∗2
3 ) = E∗

(
1

σ̂2
W̃

1

n
bTJΓ

1/2
dn M∗

(
Idn − 1

dn
1dn×dn

)(
(Γ̂ǫ

κ,l)
−1/2 − (Γdn)

−1/2
)
Y

×Y T
(
(Γ̂ǫ

κ,l)
−1/2 − (Γdn)

−1/2
)T (

Idn − 1

dn
1dn×dn

)T

M∗T (Γ1/2
dn )TJT b

)

=
1

σ̂2
W̃

1

n
bTJΓ

1/2
dn E∗ (V ∗V ∗T ) (Γ1/2

dn )TJT b,

where V ∗ is a bootstrap vector drawn from (Idn − 1
dn1dn×dn)

(
(Γ̂ǫ

κ,l)
−1/2 − (Γdn)

−1/2
)
Y . Due

to independent resampling, it holds E∗ (V ∗V ∗T ) = σ2
V Idn with

σ2
V = Y T

(
(Γ̂ǫ

κ,l)
−1/2 − (Γdn)

−1/2
)T (

Idn − 1

dn
1dn×dn

)T

×E∗(M∗T
j• M∗

j•)

(
Idn − 1

dn
1dn×dn

)(
(Γ̂ǫ

κ,l)
−1/2 − (Γdn)

−1/2
)
Y

=
1

dn
Y T
(
(Γ̂ǫ

κ,l)
−1/2 − (Γdn)

−1/2
)T (

Idn − 1

dn
1dn×dn

)2 (
(Γ̂ǫ

κ,l)
−1/2 − (Γdn)

−1/2
)
Y

≤ 1

dn
Y TY λmax

((
(Γ̂ǫ

κ,l)
−1/2 − (Γdn)

−1/2
)T (

Idn − 1

dn
1dn×dn

)2 (
(Γ̂ǫ

κ,l)
−1/2 − (Γdn)

−1/2
))

≤ 1

dn
Y TY ρ2

((
(Γ̂ǫ

κ,l)
−1/2 − (Γdn)

−1/2
)T)

ρ2
(
Idn − 1

dn
1dn×dn

)
,

where M∗
j• denotes the jth row of M∗ and E∗(M∗T

j• M∗
j•) =

1
dnIdn. Thanks to Y TY = OP (dn),

ρ(((Γ̂ǫ
κ,l)

−1/2 − (Γdn)
−1/2)T ) = OP (log

2(n) · rl,n) and ρ
(
Idn − 1

dn1dn×dn

)
= O(1), we obtain

E∗(R∗2
3 ) ≤ σ2

V

σ̂2
W̃

1

n
bTJJT bλmax(Γdn) =

σ2
V

σ̂2
W̃

|b|22ρ2(Γ1/2
dn )

resulting in R∗
3 = OP ∗(log2(n) · rl,n) because σ̂2

W̃
is bounded away from zero and from above

with probability tending to one. Finally, since the same holds true for σ̂2
W , to handle R∗

4, it is

sufficient to show |σ̂2
W − σ̂2

Ŵ
| = OP (log

2(n) · rl,n). By plugging-in, we have

|σ̂2
W̃

− σ̂2
W | =

∣∣∣∣∣
1

dn
Y T (Γ

−1/2
dn )T

(
Idn − 1

dn
1dn×dn

)2 (
Γ
−1/2
dn − (Γ̂ǫ

κ,l)
−1/2

)
Y

∣∣∣∣∣

+

∣∣∣∣∣
1

dn
Y T
(
Γ
−1/2
dn − (Γ̂ǫ

κ,l)
−1/2

)T (
Idn − 1

dn
1dn×dn

)2

(Γ̂ǫ
κ,l)

−1/2Y

∣∣∣∣∣
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and by Cauchy-Schwarz inequality, the first term above is bounded by
(

1

dn
Y T (Γ

−1/2
dn )T

(
Idn − 1

dn
1dn×dn

)2

(Γ
−1/2
dn )Y

)1/2

×
(

1

dn
Y T
(
Γ
−1/2
dn − (Γ̂ǫ

κ,l)
−1/2

)T (
Idn − 1

dn
1dn×dn

)2 (
Γ
−1/2
dn − (Γ̂ǫ

κ,l)
−1/2

)
Y

)1/2

≤ 1

dn
Y TY ρ

(
(Γ

−1/2
dn )T

(
Idn − 1

dn
1dn×dn

))
ρ

((
Γ
−1/2
dn − (Γ̂ǫ

κ,l)
−1/2

)T (
Idn − 1

dn
1dn×dn

))

= OP (log
2(n) · rl,n).

Analogue computations for the second term leads to R∗
4 = OP ∗(log2(n)·rl,n), which concludes the

proof of the first assertion. The claimed equality in (ii) is obtained from a similar calculation as

executed for R∗
2, where ρ(Γ

1/2
dn,k−Γ

1/2
dn ) = O(log2(n) ·sk) is used. The last result follows as in the

proof of Corollary 2.2, from (A.3) with (Γ̂ǫ
κ,l)

1/2 replaced by Γ
1/2
dn,k and ρ(Γdn,k − Γdn) = O(sk),

where sk =
∑∞

h=k+1 |C(h)|1. �

Lemma A.2. Under the assumptions of Theorem 4.1, V ar∗( 1√
n

∑n
t=1 Ỹ

∗
t ) =

∑
h∈ZC(h)+oP (1).

Proof. For any R
d-valued vector b, we get by standard arguments

V ar∗
(
bT

1√
n

n∑

t=1

Ỹ
∗
t

)
=

1

n
bTJΓdnJ

T b = bT


 1

n

n∑

i,j=1

C(i− j)


 b = bT

( ∞∑

h=−∞
C(h)

)
b+ o(1).

�

Lemma A.3. Under (A1)–(A4) with some q ≥ 2, we have E∗(|Z̃1|∗q) = OP (1). Under (A1′)–
(A4′), we have E∗(|Z̃1|∗q) = OP (d

q/2).

Proof. Due to E∗(|Z̃1|∗q) = 1
dn

∑dn
t=1 |Z̃t|q, we show E(|Z̃t|q) = ‖Z̃t‖qq = O(1) uniformly in t. By

defining (Idn − 1
dn1dn×dn)(Γdn)

−1/2 = (aij)i,j=1,...,dn and At(j) = (at,(j−1)d+1, . . . , at,jd)
T , we get

Z̃t =
1

σ̂
W̃

eTt

(
Idn − 1

dn
1dn×dn

)
(Γdn)

−1/2Y =
1

σ̂
W̃




n∑

j=1

AT
t (j)(Xj − µ)−

n∑

j=1

AT
t (j)

(
X − µ

)



and thanks to boundedness of 1
σ̂
W̃

, it suffices to consider the two terms in parentheses above in

the following. For the second one, we get from triangle inequality and (A4) that

‖
n∑

j=1

AT
t (j)

(
X − µ

)
‖qq = ‖

n∑

j=1

d∑

s=1

at,(j−1)d+s

(
Xs − µs

)
‖qq ≤




n∑

j=1

d∑

s=1

|at,(j−1)d+s|




q

Op(n
−q/2)

holds and together with

n∑

j=1

d∑

s=1

|at,(j−1)d+s| =
dn∑

j=1

|at,j | ≤


dn

dn∑

j=1

a2t,j




1/2

≤
√
dnρ(Γ

−1/2
dn ) = O(

√
dn) (A.5)

by Cauchy-Schwarz, this term is of order OP (d
q/2) and bounded in probability for fixed d. Now,

we turn to the first term. We define Pj−mXj = E(Xj − µ|Fj−m) − E(Xj − µ|Fj−m−1), where

Ft = σ(Xs − µ, s ≤ t) and set Mm,n,t =
∑n

j=1A
T
t (j)

{
E(Xj − µ|Fj−m)− E(Xj − µ|Fj−m−1)

}
.

This yields
∑n

j=1A
T
t (j)(Xj−µ) =

∑∞
m=0Mm,n,t almost surely and now the desired result follows
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from ‖∑∞
m=0Mm,n,t‖qq ≤ (

∑∞
m=0 ‖Mm,n,t‖q)q < ∞ uniformly in t. By Proposition 4 in Dedecker

and Doukhan (2003), we get ‖Mm,n,t‖q ≤ (2q
∑n

i=1 bi,m,n,t)
1/2, where

bi,m,n,t = max
i≤l≤n

‖AT
t (i)Pi−mXi

l∑

k=i

E(AT
t (k)Pk−mXk|Mi)‖q/2

with Mi = σ(AT
t (k)Pk−mXk, 0 ≤ k ≤ i). For the conditional expectations above, we obtain

E(AT
t (i)Pi−mX i|Mi) = AT

t (i)Pi−mX i for k = i and

E(AT
t (k)Pk−mXk|Mi) = AT

t (k)E(E(Xk|Fk−m)|Mi)−AT
t (k)E(E(Xk|Fk−m−1)|Mi) = 0

for all k > i due to Mi ⊂ σ(Fk−m−1). This leads to

bi,m,n,t = ‖(AT
t (i)Pi−mXi)

2‖q/2 ≤ AT
t (i)At(i)‖(Pi−mXi)

TPi−mX i‖q/2
by Cauchy-Schwarz, where the first factor equals

∑id
s=(i−1)d+1 a

2
ts and the second is bounded by

d∑

p=1

(E(Pi−mXp,i)
q)2/q ≤ d max

p=1,...,d
(E(Pi−mXp,i)

q)2/q = d max
p=1,...,d

(E(P0Xp,m)q)2/q .

This results in

‖Mm,n,t‖2q ≤ 2q
n∑

i=1

id∑

s=(i−1)d+1

a2tsd max
p=1,...,d

(E(P0Xp,m)q)1/2 =

(
2qd

dn∑

i=1

a2ti

)
max

p=1,...,d
‖P0Xp,m‖2q(A.6)

and (
∑∞

m=0 ‖Mm,n,t‖q)q = O(dq/2) by similar arguments used to get (A.5). In particular, the
last term is bounded in probability for fixed d, which concludes this proof. �

Lemma A.4. Under the assumptions of Theorem 4.1, 1√
n

∑n
t=1 Ỹ

∗
t converges in distribution in

probability to a centered normal distribution with variance obtained in Lemma A.2.

Proof. By Lemma A.1(ii), we may consider bT 1√
n

∑n
t=1 Ỹ

∗,k
t for some R

d-valued vector b and

prove its asymptotic normality by using the Cramér-Wold device. We have

bT
1√
n

n∑

t=1

Ỹ
∗,k
t =

1√
n
bTJ(Γ

1/2
dn,k)Z̃

∗
=

dn∑

i=1

n−1/2bTJΓ
1/2
dn,k(•, i)Z̃∗

i =
dn∑

i=1

U∗
i (A.7)

with an obvious notation for U∗
i , where Γ

1/2
dn,k(•, i) denotes the ith column of Γ

1/2
dn,k. Then, the

desired result follows from a CLT for triangular arrays [cf. Billingsley (1995, p.362)] which
follows if the Lyapunov condition (for δ = 2), i.e.

1

(V ar∗(
∑dn

i=1 U
∗
i ))

2

dn∑

i=1

E∗(U∗4
i ) → 0 (A.8)

in probability as n → ∞ is satisfied. Considering the denominator, we get that
(

dn∑

i=1

E∗(U∗2
i )

)2

=

(
dn∑

i=1

1

n
bTJΓ

1/2
dn,k(•, i)bTJΓ

1/2
dn,k(•, i)

)2

=

(
1

n
bTJΓdn,kJ

T b

)2

is bounded from below and from above due to ρ(Γdn,k − Γdn) → 0 for any k → ∞ and (A3).
With Lemma A.3, we get for the numerator

dn∑

i=1

E∗(U∗4
i ) =

dn∑

i=1

1

n2

(
bTJΓ

1/2
dn,k(•, i)

)4
E∗(Z̃∗4

i ) ≤
dn∑

i=1

1

n2
|b|42|JΓ1/2

dn,k(•, i)|42OP (d
2)
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and with |JΓ1/2
dn,k(•, i)|42 = O(k4d2) uniformly in i, we obtain

∑dn
i=1E

∗(U∗4
i ) = OP (d

5k4/n).

Altogether, this leads to

1

(V ar∗(
∑n

j=1 U
∗
j ))

2

n∑

j=1

E∗(U∗4
j ) = OP

(
k4

n

)
= oP (1)

for some appropriate sequence k = k(n) that satisfies log2(n)sk = o(1) and k4 = o(n), which is
assured to exist by (A1) with some g > 0. �

Proof of Theorem 4.2.

Let J̃
∗
n(ω) = 1√

2πn

∑n
t=1 Ỹ

∗
t e

−itω and J̃
∗,k
n (ω) = 1√

2πn

∑n
t=1 Ỹ

∗,k
t e−itω be the discrete Fourier

transforms based on Y ∗
1, . . . , Y

∗
n and Y ∗,k

1 , . . . , Y ∗,k
n as defined in (A.4) and in Lemma A.1,

respectively. The corresponding periodograms are denoted by Ĩ∗n(ω) = J̃
∗
n(ω)J̃

∗H
n (ω) and

Ĩ
∗,k
n (ω) = J̃

∗,k
n (ω)J̃

∗,kH
n (ω) such that

f̃∗(ω) =
1

n

⌊n
2
⌋∑

j=−⌊n−1

2
⌋

Kb(ω − ωj )̃I
∗
n(ωj)

and f̃∗,k(ω) analogue with Ĩ∗n(ωj) replaced by Ĩ
∗,k
n (ωj) are approximations to the bootstrap kernel

spectral density estimator f̂∗(ω). The proof proceeds through a sequence of lemmas. Lemma
A.5 gives the justification for considering

√
nb(f̃∗

pq(ω)− f̃pq(ω)) =
√
nb(f̃∗

pq(ω)− E∗(f̃∗
pq(ω))) +

√
nb(E∗(f̃∗

pq(ω))− f̃pq(ω))

in the following and to prove the CLT for these expressions, where f̃ as defined in Lemma A.5
below. Lemma A.6 gives the covariance structure of the stochastic leading term above, Lemma
A.7 deals with the asymptotics of the bias term and Lemma A.8 provides asymptotic normality.

Lemma A.5. Under the assumptions of Theorem 4.2, it holds

(i) J∗
n(ω)− J̃

∗
n(ω) = oP ∗(1) and (ii) J̃

∗
n(ω)− J̃

∗,k
n (ω) = oP ∗(1)

uniformly in ω, respectively. Further, it holds

(iii)
√
nb(f̂∗(ω)− f̃∗(ω)) = oP ∗(1) and (iv)

√
nb(f̃∗(ω)− f̃∗,k(ω)) = oP ∗(1)

and, for f̃(ω) = 1
2π

∑n−1
h=−(n−1)C(h)e−ihω, we have (v)

√
nb
(
f̃(ω)− f̌(ω)

)
= oP (1) for all ω.

Proof. (i) Let Jω = (e−i1ω, . . . , e−inω)⊗ Id and b ∈ C
d. Then, we have

bT (J∗
n(ω)− J̃

∗
n(ω)) =

1√
2πn

bTJω

(
(Γdn)

1/2(Z∗ − Z̃
∗
) +

(
(Γ̂κ,l)

1/2 − (Γdn)
1/2
)
Z∗
)

and analogue to the proof of Lemma A.1 we obtain the claimed result, where uniformity follows

from the fact that bTJωJω
T
b is independent of ω. Part (ii) follows similarly. (iii) Plugging-in

for f̂∗(ω) and f̃∗(ω), yields

ρ(
√
nb(f̂∗(ω)− f̃∗(ω))) ≤

√
b

n

⌊n
2
⌋∑

j=−⌊n−1

2
⌋

Kb(ω − ωj)ρ

(
J∗
n(ωj)

(
J∗
n(ωj)− J̃

∗
n(ωj)

)H)

+

√
b

n

⌊n
2
⌋∑

j=−⌊n−1

2
⌋

Kb(ω − ωj)ρ

((
J∗
n(ωj)− J̃

∗
n(ωj)

)(
J̃
∗
n(ωj)

)H)

= A1 +A2.
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By using part (i) of this lemma, we get

A1 ≤
√

b

n

⌊n
2
⌋∑

j=−⌊n−1

2
⌋

Kb(ω − ωj)ρ (J
∗
n(ωj)) ρ

(
J∗H
n (ωj)− J̃

∗H
n (ωj)

)
= OP ∗

(√
nb log2(n)rl,n

)

and an analogue result for A2. Part (iv) follows in the same way and is omitted. (v) By

plugging-in for f̃(ω) and f̌(ω), we get

|
√
nb(f̃(ω)− f̌(ω))|1 ≤

√
nb

2π

n−1∑

h=−(n−1)

(1− κl(h))|C(h)|1 +
√
nb

2π

n−1∑

h=−(n−1)

κl(h)
∣∣∣C(h)− Ĉ(h)

∣∣∣
1

and the first summand above is of order OP (
√
nb · sl) and the second one is OP (

√
bl). �

Lemma A.6. Under the assumptions of Theorem 4.2, it holds

nbCov∗
(
f̃∗
pq(ω), f̃

∗
rs(λ)

)
=
(
fpr(ω)fqs(ω)δωλ

+ fps(ω)fqr(ω)τ0,π

) 1

2π

∫
K2(v)dv + oP (1)

for all p, q, r, s = 1, . . . , d and all ω, λ ∈ [0, π].

Proof. We have

nbCov∗(f̃∗
pq(ω), f̃

∗
rs(λ)) =

b

n

⌊n
2
⌋∑

k1,k2=−⌊n−1

2
⌋

Kb(ω − ωj1)Kb(λ− ωj2)Cov∗(Ĩ∗n,pq(ωj1), Ĩ
∗
n,rs(ωj2))(A.9)

and the conditional covariance on the last right-hand side above becomes

1

4π2n2

n∑

t1,t2,t3,t4=1

dn∑

i1,i2,i3,i4=1

Γ
1/2
dn ((t1 − 1)d+ p, i1)Γ

1/2
dn ((t2 − 1)d+ q, i2)Γ

1/2
dn ((t3 − 1)d+ r, i3)

×Γ
1/2
dn ((t4 − 1)d+ s, i4)Cov∗(Z̃∗

i1Z̃
∗
i2 , Z̃

∗
i3Z̃

∗
i4)e

−i(t1−t2)ωj1ei(t3−t4)ωj2 (A.10)

and due to i.i.d. resampling, we have

Cov∗(Z̃∗
i1Z̃

∗
i2 , Z̃

∗
i3Z̃

∗
i4) =





1, i1 = i3, i2 = i4 or i1 = i4, i2 = i3

E∗(Z̃∗4
i )− 3, i1 = i2 = i3 = i4

0, otherwise

. (A.11)

Both combinations of the first case in (A.11) together with (A.10) lead to

 1

2πn

n∑

t1,t3=1

Cpr(t1 − t3)e
−it1ωj1eit3ωj2




 1

2πn

n∑

t2,t4=1

Cqs(t2 − t4)e
it2ωj1e−it4ωj2




+


 1

2πn

n∑

t1,t4=1

Cps(t1 − t4)e
−it1ωj1e−it4ωj2




 1

2πn

n∑

t2,t3=1

Cqr(t2 − t3)e
it2ωj1eit3ωj2




= fpr(ωj1)fqs(ωj1)1(j1 = j2) + fps(ωj1)fqr(ωj1)1(j1 = −j2) + o(1) (A.12)

uniformly in ωj1 and ωj2 , respectively. To handle the second case in (A.11), observe that we may

replace all entries of Γ
1/2
dn by the corresponding entries of its k-banded version Γ

1/2
dn,k in (A.10)
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by Lemma A.5. Therefore, we obtain

1

4π2n2

dn∑

i=1

(
n∑

t1=1

Γ
1/2
dn,k((t1 − 1)d+ p, i)e−it1ωj1

)(
n∑

t2=1

Γ
1/2
dn,k((t2 − 1)d+ q, i)eit2ωj1

)

×
(

n∑

t3=1

Γ
1/2
dn,k((t3 − 1)d+ r, i)eit3ωj2

)(
n∑

t4=1

Γ
1/2
dn,k((t4 − 1)d+ s, i)e−it4ωj2

)(
E∗(Z̃∗4

1 )− 3
)

= OP

(
k4

n

)

uniformly in ωj1 and ωj2 due to the banded shape of Γ
1/2
dn,k and Lemma A.3. Together with

(A.9), the second case in (A.11) becomes OP (bk
4) = oP (1) under the assumptions. �

Lemma A.7. Under the assumptions of Theorem 4.2, it holds

E∗
(
f̃∗
pq(ω)

)
− f̃pq(ω) = b2f ′′

pq(ω)
1

4π

∫ π

−π
v2K(v)dv + oP (b

2)

for all p, q = 1, . . . , d and all ω.

Proof. Straightforward calculations yield

E∗
(
f̃∗(ω)

)
− f̃(ω) =

1

n

⌊n
2
⌋∑

j=−⌊n−1

2
⌋

Kb(ω − ωj)
1

2π

n−1∑

h=−(n−1)

(
1− |h|

n

)
C(h)

(
e−ihωj − e−ihω

)

+




1

n

⌊n
2
⌋∑

j=−⌊n−1

2
⌋

Kb(ω − ωj)− 1




1

2π

n−1∑

h=−(n−1)

C(h)e−ihω,

where the second term is negligible thanks to | 1n
∑⌊n

2
⌋

j=−⌊n−1

2
⌋Kb(ω − ωj) − 1| = O( 1

nb). The

first term can be treated as in Lemma 7.4 in Jentsch and Kreiss (2010), which concludes this
proof. �

Lemma A.8. Under the assumptions of Theorem 4.2,
√
nb(f̃∗

pq(ωl) − E∗(f̃∗
pq(ωl)) : p, q =

1, . . . , d; l = 1, . . . , s) converges in distribution in probability to a centered d2s-dimensional nor-
mal distribution with covariance matrix as obtained in Lemma A.6.

Proof. We prove asymptotic normality only for
√
nb(f̃∗

pq(ω) − E∗(f̃∗
pq(ω))) in the following and

a more general result follows from the Cramér-Wold device. First note that the quantity of
interest may be expressed as a generalized quadratic form, i.e.

√
nb
(
f̃∗
pq(ω)− E∗

(
f̃∗
pq(ω)

))

=

dn∑

i1,i2=1

√
b

2π
√
n

n∑

t1,t2=1




1

n

⌊n
2
⌋∑

j=−⌊n−1

2
⌋

Kb(ω − ωj)e
−i(t1−t2)ωj




×Γ
1/2
dn ((t1 − 1)d+ p, i1)Γ

1/2
dn ((t2 − 1)d+ q, i2)

(
Z̃∗
i1Z̃

∗
i2 − E∗(Z̃∗

i1Z̃
∗
i2)
)

=
dn∑

i1i2=1

wi1i2(Z̃
∗
i1 , Z̃

∗
i2)

=
∑

1≤i1<i2≤dn

Wi1i2 +
dn∑

i=1

wii(Z̃
∗
i , Z̃

∗
i )
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with an obvious notation for wi1i2(Z̃
∗
i1
, Z̃∗

i2
) and with Wi1i2 := wi1i2(Z̃

∗
i1
, Z̃∗

i2
) + wi2i1(Z̃

∗
i2
, Z̃∗

i1
).

Due to i.i.d. resampling, we can apply Theorem 2.1 of deJong (1987) to the quadratic form. It
is clean by an easy computation and its variance is bounded, such that it remains to show that

(i) max
1≤i1≤dn

dn∑

i2=1

E∗(|Wi1i2 |2) → 0 and (ii)
E∗|∑1≤i1<i2≤dnWi1i2 |4

(E∗|∑1≤i1<i2≤dnWi1i2 |2)2
→ 3

hold in probability, respectively. To show (i), examplarily, we consider only the first term of

|Wi1i2 |2 in more detail, that is, |wi1i2(Z̃
∗
i1
, Z̃∗

i2
)|2 and we get

E∗(|wi1i2(Z̃
∗
i1 , Z̃

∗
i2)|2) (A.13)

=
b

4π2n

n∑

t1,t2,t3,t4=1




1

n

⌊n
2
⌋∑

j1=−⌊n−1

2
⌋

Kb(ω − ωj1)e
−i(t1−t2)ωj1







1

n

⌊n
2
⌋∑

j2=−⌊n−1

2
⌋

Kb(ω − ωk2)e
i(t3−t4)ωj2




×Γ
1/2
dn ((t1 − 1)d+ p, i1)Γ

1/2
dn ((t2 − 1)d+ q, i2)Γ

1/2
dn ((t3 − 1)d+ p, i1)Γ

1/2
dn ((t4 − 1)d+ q, i2)V ar∗(Z̃∗

i1Z̃
∗
i2).

The conditional variance above equals 1+(E∗(Z̃∗4
1 )−2)1(i1 = i2) and we may replace all entries

of Γ
1/2
dn by the corresponding entries of its k-banded version Γ

1/2
dn,k by Lemma A.5 in the following.

For any fixed i1, we obtain by summing over i2 for the first case

b

4π2n

n∑

t1,t2,t3,t4=1




1

n

⌊n
2
⌋∑

j1=−⌊n−1

2
⌋

Kb(ω − ωj1)e
−i(t1−t2)ωj1







1

n

⌊n
2
⌋∑

j2=−⌊n−1

2
⌋

Kb(ω − ωj2)e
i(t3−t4)ωj2




×Γ
1/2
dn,k((t1 − 1)d+ p, i1)Γdn,k((t2 − 1)d+ q, (t4 − 1)d+ q)Γ

1/2
dn,k((t3 − 1)d+ p, i1)

= O

(
k2

n

)
+ o

(
bk2
)

and with use of Lemma A.3, we get for the second case

b

4π2n

n∑

t1,t2,t3,t4=1




1

n

⌊n
2
⌋∑

j1=−⌊n−1

2
⌋

Kb(ω − ωj1)e
−i(t1−t2)ωj1







1

n

⌊n
2
⌋∑

j2=−⌊n−1

2
⌋

Kb(ω − ωj2)e
i(t3−t4)ωj2




×Γ
1/2
dn,k((t1 − 1)d+ p, i1)Γ

1/2
dn,k((t2 − 1)d+ q, i2)Γ

1/2
dn,k((t3 − 1)d+ p, i1)Γ

1/2
dn,k((t4 − 1)d+ q, i2)

= OP

(
bk4

n

)

uniformly in i1, respectively, and both terms above vanish asymptotically for some suitably
chosen sequence k which is possible by the imposed conditions. Being concerned with (ii), we
consider first the numerator and get

E∗



∣∣∣∣∣∣

∑

1≤i1<i2≤dn

Wi1i2

∣∣∣∣∣∣

4
 = E∗




∣∣∣∣∣∣∣∣

dn∑

i1,i2=1

i1 6=i2

wi1i2(Z̃
∗
i1 , Z̃

∗
i2)

∣∣∣∣∣∣∣∣

4


and by expanding the above expression, we see that the most contributing case is where we
have four twins of equal indices. All other cases are of lower order. If we take all summands
above into account, only three combinations of twins do not vanish and each of them yields
const2 · f4

pq(ω). For the denominator, we get (const · f2
pq(ω))

2 which concludes this proof. For
details compare for instance the proof of Theorem 2 in Jentsch (2012). �
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Proof of Theorem 5.1.

Under assumptions (A1′) and (A2′), we get the same bounds as obtained in Theorems 2.1, and
respectively, and |C(h)|1 ≤ d2 supn∈N supi,j=1,...,d(n) |Cij(h)| leads to the first part of (i). By
similar arguments as employed in the proof of Corollary 2.1, we get also the second part under
(A3′) and convergence to zero in probability under the imposed conditions. Analogue to the
proof of Corollary 2.1, we get (ii) and (iii) by exploiting the bound in (A.3) for the Cholesky
factorization. �

Proof of Theorem 5.2.

We follow the proof of Theorem 4.1 and adopt the notation therein. First, analogue to the proof
of Lemma A.1, we get for any real-valued sequence b = b(d(n)) of d(n)-dimensional vectors with

0 < M1 ≤ |b(d(n))|22 ≤ M2 < ∞ for all n ∈ N (A.14)

that the following holds

(i) bT

(
1√
n

n∑

t=1

Y ∗
t

)
= bT

(
1√
n

n∑

t=1

Ỹ
∗
t

)
+OP ∗(log2(dn)d2r̃l,n),

(ii) bT

(
1√
n

n∑

t=1

Ỹ
∗
t

)
= bT

(
1√
n

n∑

t=1

Ỹ
∗,k
t

)
+OP ∗(log2(dn)d2s̃k),

where r̃l,n is defined in Theorem 5.1 and s̃k =
∑∞

h=k+1{supn∈N supi,j=1,...,d(n) |Cij(h)|}. Both
OP ∗-terms above vanish under the imposed conditions. Similar to the proof of Lemma A.4, we
want to show asymptotic normality for (A.7) and, therefore, we have to check the Lyapunov
condition (A.8). For the denominator, we get that

(
dn∑

i=1

E∗(U∗2
i )

)2

=

(
dn∑

i=1

1

n
bTJΓ

1/2
dn,k(•, i)bTJΓ

1/2
dn,k(•, i)

)2

=

(
1

n
bTJΓdn,kJ

T b

)2

is bounded from below and from above due to (A.14), (A3′) and ρ(Γdn,k−Γdn) → 0 for a suitable
sequence k → ∞ assured to exist by the imposed assumptions. For the numerator, we get

dn∑

i=1

E∗(U∗4
i ) ≤

dn∑

i=1

1

n2
|b|42|JΓ1/2

dn,k(•, i)|42OP (d
2) = OP (d

5k4/n),

where Lemma A.3 for increasing time series dimension has been used. This gives

1

(V ar∗(
∑n

j=1 U
∗
j ))

2

n∑

j=1

E∗(U∗4
j ) = OP

(
d5k4

n

)
= oP (1)

for some appropriate sequence k = k(n) that satisfies log2(dn)d2s̃k = o(1) and d5k4 = o(n),
which is assured to exist by (A1′) with some sufficiently large g > 0. Further, we get

|v2 − v̂2| =
1

n
bTJ

{
E(XX

T
)− E∗(XX

T
)
}
JT b =

1

n
bTJ{Γdn − Γ̂ǫ

κ,l}JT b

≤
(
1

n
bTJJT b

)1/2( 1

n
bTJ{Γdn − Γ̂ǫ

κ,l}{Γdn − Γ̂ǫ
κ,l}TJT b

)1/2

≤ |b|22ρ(Γdn − Γ̂ǫ
κ,l)

which concludes the proof as ρ(Γdn − Γ̂ǫ
κ,l) = oP (1) and |b22| = O(1) by assumption. �
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